1	e.g. $35x + 10y = 27.5$ or $21x + 6y = 16.5$ 6x - 10y = 34 $21x - 35y = 119$		4	M1	for a correct method to eliminate <i>x</i> or <i>y</i> :
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, and the second
					coefficients of x or y the same and correct operator to eliminate
	(55-7x)				selected variable (condone any one arithmetic error in multiplication)
	e.g. $3x - 5\left(\frac{5.5 - 7x}{2}\right) = 17$ or				
	$7\left(\frac{17+5y}{3}\right) + 2y = 5.5$ oe				or writing <i>x</i> or <i>y</i> in terms of the other variable and correctly
	3) 29 35 60				substituting.
		x = 1.5 or $y = -2.5$		A1	oe, dep on M1
·				M1	(dep on 1 st M1) for a correct method to find other variable by substitution of found variable into one equation
					or for repeating the above method
					to find the second variable.
		x = 1.5 and $y = -2.5$		Al	oe, dep on M1
					Total 4 marks

2	Elimination	Substitution		4	M1	for a correct method to eliminate x or y :
	E.g.	E.g.				coefficients of x or y the same and correct
	21x - 6y = 102	(34+2y)				operation to eliminate selected variable
	21x + 35y = -21	$3\left(\frac{34+2y}{7}\right)+5y=-3$				(condone 1 arithmetical error)
	(-41y = 123)	or				0.00
		$3x+5(\frac{7x-34}{2})=-3$				or
	or	$ \begin{array}{c} \text{or} \\ 3x + 5\left(\frac{7x - 34}{2}\right) = -3 \end{array} $				for correctly writing x or y in terms of the
	25 10 170	or				other variable and correctly substituting
	35x - 10y = 170	(2 5)				
	6x + 10y = -6	$7\left(\frac{-3-5y}{3}\right)-2y=34$				
	(41x = 164)	(3)				
		or				
		$7x - 2\left(\frac{-3 - 3x}{5}\right) = 34$				
					A1	dep on M1 for $x = 4$ or $y = -3$
· ·	E.g.				M1	dep on M1 for substitution of found
	$7x - 2 \times -3 = 34$					variable
						or
						repeating the steps in first M1 for the
						second variable
			x = 4		A1	cao
			y = -3			A correct answer without working scores
						no marks
						Total 4 marks

3	$3y(2y+1) - y^2 = 8 \text{ or}$ $x = \frac{8+y^2}{3y} \to \frac{8+y^2}{3y} - 2y = 1 \text{ or}$ $-3xy - y^2 = 8$ $3xy - 3y \times 2y = 3y \times 1$ oe				M1	correct first step eg substitution by eg $x = 1 + 2y$ or $y = \frac{x-1}{2}$ to get an equation in a single variable or writing 2^{nd} equation with x the subject and substituting into 1^{st} or multiplying 2^{nd} equation by $3y$ and subtracting from 1^{st} oe
	eg $5y^2 + 3y - 8 = 0$ (5y + 8)(y - 1) = 0 or $-3 \pm \sqrt{3^2 - 4 \times 5 \times (-8)}$ 2×5	eg $5x^2 - 4x - 33$ (= 0) (5x + 11)(x - 3) (= 0) or $4 \pm \sqrt{(-4)^2 - 4 \times 5 \times (-33)}$ 2×5			A1 M1ft	for a correct simplified quadratic dep on M1 for solving their 3 term quadratic equation using any correct method (allow one sign error and some simplification – allow as far as $\frac{-3\pm\sqrt{9+160}}{10}$) or if factorising, allow brackets which expanded give 2 out of 3 terms correct)
	$y = -\frac{8}{5}$ and $y = 1$ (both)	$x = -\frac{11}{5} \text{and } x = 3 \text{ (both)}$			A1	dep on first M1
			$x = -\frac{11}{5}, y = -\frac{8}{5}$ $x = 3, y = 1$	5	A1	oe dep on first M1 Must be paired correctly
						Total 5 marks

4	(adding) $10x = -5$ or $21x + 35y = 42$		3	M1	Correct method to eliminate x or y Or
	21x - 15y = -33				making coefficients of x or y the same
	then $50y = 75$				and correct operator has been applied
					to eliminate x or y (2 out of 3 terms
					correct implies a correct operator)
					or correct algebraic substitution for x
					or y into other equation
		x = -0.5 oe	[A1	Both A marks dep on M1
		y = 1.5 oe		A1	
					Total 3 marks

5	gradient of $JK = -0.5$ or $m \times 2 = -1$		M1 for finding the gradient of JK using $m_1 \times m_2 = -1$
3	$\frac{k-15}{6-i} = -\frac{1}{2} \text{ or } 2k-j = 24 \text{ or } j = 2k-24 \text{ or } k = \frac{j+24}{2} \text{ oe}$		M1 for expressing the gradient of JK in terms of j and k or a correct equivalent equation
	$6-j$ 2 2 2 2 2 $(j-6)^2 + (k-15)^2 = 80$ oe		M1 for finding equation of JK in terms of j and k
	$(7-6)^2 + (k-13)^2 - 80$ oe		MT for finding equation of JK in terms of j and k
	$\left(\frac{j+6}{2}, \frac{k+15}{2}\right) $ oe		or for finding the midpoint of M
	or $(j+4)^2 + 196 = 100 + (k-1)^2$ oe		or for equating length <i>HJ</i> with length <i>HK</i>
	eg $3k^2 - 78k + 495 = 0$ oe or $5j^2 - 60j - 140 = 0$ oe		M1 (dep on M3) writing a correct quadratic expression in the form $ax^2 + bx + c$ (= 0) (allow $ax^2 + bx = c$)
	or $5k^2 - 150k + 1045 = 0$ oe		the form $ax + bx + c$ (o) (allow $ax + bx - c$)
	or $3j^2 - 12j - 36 = 0$ oe		
	gradient <i>HM</i> : eg $\frac{\frac{k+15}{2}-1}{\frac{j+6}{2}+4} = 2$ or $k = 2j+15$ or $j = \frac{k-15}{2}$ oe		or A correct equation for the gradient of HM in terms of j and k or a correct equivalent equation
	eg $(k-15)(k-11)(=0)$ or $\frac{78 \pm \sqrt{(-78)^2 - 4 \times 3 \times 495}}{2 \times 3}$ eg $(j-6)(j+2)(=0)$ or $\frac{12 \pm \sqrt{(-12)^2 - 4 \times 3 \times -36}}{2 \times 3}$		M1 (dep on M3) for a complete method to solve their 3- term quadratic equation (allow one sign error in the use of the quadratic formula) or
	or $(k-13)^2 - 169 + 165 (= 0)$ $(j-2)^2 - 4 - 12 (= 0)$		a correct method to eliminate either j or k eg $2k - 24 = \frac{k - 15}{2}$ oe or $\frac{j + 24}{2} = 2j + 15$ oe
		=-2, k=11	A1
			Total 6 marks

5	$\left(\frac{j+6}{2}, \frac{k+15}{2}\right)$ oe		6	M1 for finding the midpoint of M
ALT	$\frac{\frac{k+15}{2}-1}{\frac{j+6}{2}+4} = 2 \text{ or } k-2j = 15 \text{ or } k = 2j+15 \text{ or}$ $j = \frac{k-15}{2} \text{ oe}$			M1 for expressing the gradient of JK in terms of j and k or a correct equivalent equation
	$(j-6)^2 + (k-15)^2 = 80$ oe or $(j+4)^2 + 196 = 100 + (k-1)^2$ oe			M1 for finding the length of JK in terms of j and k or for equating length HJ with length HK
	E.g. $5j^2 - 12j - 44 = 0$ or $5k^2 - 174k + 1309 = 0$ or $3j^2 + 48j + 84 = 0$ oe $3k^2 + 6k - 429 = 0$ oe			M1 (dep on M3) writing the correct quadratic expression in form $ax^2 + bx + c$ (= 0) allow $ax^2 + bx = c$
	E.g. $(5j-22)(j+2)(=0)$ or $(j+8)^2-64+28(=0)$ E.g. $(5k-119)(k-11)(=0)$ or $(j+8)^2-64+28(=0)$ E.g. $(5k-119)(k-11)(=0)$ or $(k+1)^2-1-143(=0)$			M1 (dep on M3) for a complete method to solve their 3-term quadratic equation (allow one sign error in the use of the quadratic formula)
	j = -	-2, k = 11		Al
				Total 6 marks

$2x^2 + 2x - 24 \text{ (=0) or } x^2 + x - 12 \text{ (=0)} $ or $2x^2 + 2x - 24 \text{ or } x^2 + x + x = 12$ $(x + 4)(x - 3) \text{ (= 0) or} $ $x = \frac{-1 \pm \sqrt{1^2 - (4 \times 1 \times -12)}}{2 \times 1} \text{ or}$ $\left(\frac{x - \frac{1}{2}}{2}\right)^2 - \left(\frac{1}{2}\right)^2 - 12 = 0$ $x = -4 \text{ and } x = 3$ $(-4, -2) \text{ and } (3, 5)$ $Alternative mark scheme for 6$ $(y - 2)^2 + y^2 - 2y = 24$ $(y - 5)(y + 2) = 0 \text{ or}$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1} \text{ or}$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1} \text{ or}$ $\frac{-1 \pm \sqrt{1^2 - (4 \times 1 \times -12)}}{2 \times 1} \text{ or}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}{2} \text{ which expanded give 2 out of 3 terms correct)}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} or if factorising, allow $		2	I	-	3.61	C 1 ('4 (' 1' 4' 1' 4 4
	6	$x^{2} + (x+2)^{2} - 2(x+2) = 24$		5	M1	for substituting linear equation into the
$x = \frac{-1 \pm \sqrt{1^2 - (4 \times 1 \times -12)}}{2 \times 1} \text{ or } $ $x = \frac{-1 \pm \sqrt{1^2 - (4 \times 1 \times -12)}}{2 \times 1} \text{ or } $ $x = \frac{-1 \pm \sqrt{1^2 - (4 \times 1 \times -12)}}{2 \times 1} \text{ or } $ $x = \frac{-1 \pm \sqrt{1^2 - (4 \times 1 \times -12)}}{2 \times 1} \text{ or } $ $x = -4 \text{ and } x = 3$ $(-4, -2) \text{ and } (3, 5)$ $x = -4 \text{ and } x = 3$ $(-4, -2) \text{ and } (3, 5)$ $x = -4 \text{ and } x = 3$ $(-4, -2) \text{ and } (3, 5)$ $x = -4 \text{ and } x = 3$					A1	
$x = \frac{-1 \pm \sqrt{1^2 - (4 \times 1 \times -12)}}{2 \times 1} \text{ or } $ $\left(x - \frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 - 12 = 0$ $x = -4 \text{ and } x = 3$ $(-4, -2) \text{ and } (3, 5)$ $A1 \text{ for both } x \text{ values dep on } M1$ $(y - 2)^2 + y^2 - 2y = 24$ $2y^2 - 6y - 20 \text{ (=0) or } y^2 - 3y - 10 \text{ (=0)} $ $2y^2 - 6y - 20 \text{ or } y^2 - 3y = 10$ $(y - 5)(y + 2) = 0 \text{ or } $ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1} \text{ or } $ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1} \text{ or } $ using any correct method (allow one sign erro and some simplification – allow as far as $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}$ $\frac{-1 \pm \sqrt{1 + 48}}{2} or if factor$		or $2x^2 + 2x = 24$ or $x^2 + x = 12$				$ax^2 + bx + c = 0$ or $ax^2 + bx = -c$
$x = \frac{-11 \cdot \sqrt{1 - (4 \times 1 \times -12)}}{2 \times 1} \text{ or } $ and some simplification – allow as far as $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{) or if factorising, allow brackets} $ which expanded give 2 out of 3 terms correct) $x = -4 \text{ and } x = 3$ A1 for both x values dep on M1 $(-4, -2) \text{ and } (3, 5)$ A1 for both solutions dep on M1 $\frac{\text{Alternative mark scheme for 6}}{(y - 2)^2 + y^2 - 2y = 24}$ 5 M1 for substituting linear equation into the quadratic equation $2y^2 - 6y - 20 \text{ (=0) or } y^2 - 3y - 10 \text{ (=0)} $ A1 for a correct equation in the form $2y^2 - 6y = 20 \text{ or } y^2 - 3y = 10$ M1ft dep on M1 for solving their quadratic equation $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1} \text{ or } $ M1ft dep on M1 for solving their quadratic equation and some simplification – allow as far as $3 + \sqrt{9 + 40}$		(x+4)(x-3) (= 0) or			M1ft	dep on M1 for solving their quadratic equation
$\left(x - \frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 - 12 = 0$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}{\frac{2}{2}} \text{ which expanded give 2 out of 3 terms correct)}$ $x = -4 \text{ and } x = 3$ $(-4, -2) \text{ and } (3, 5)$ $A1 \text{ for both } x \text{ values dep on M1}$ $A1 \text{ for both solutions dep on M1}$ $A1 \text{ for substituting linear equation into the quadratic equation}$ $2y^2 - 6y - 20 \text{ (=0) or } y^2 - 3y - 10 \text{ (=0)}$ $2y^2 - 6y - 20 \text{ or } y^2 - 3y = 10$ $2y^2 - 6y - 20 \text{ or } y^2 - 3y = 10$ $(y - 5)(y + 2) = 0 \text{ or }$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times - 10)}}{2 \times 1} \text{ or }$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times - 10)}}{2 \times 1} \text{ or }$ $3 + \sqrt{9 + 40}$		$-1 + \sqrt{1^2 - (4 \times 1 \times -12)}$				using any correct method (allow one sign error
$\left(x - \frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 - 12 = 0$ $\frac{-1 \pm \sqrt{1 + 48}}{2} \text{ or if factorising, allow brackets}}{\frac{2}{2}} \text{ which expanded give 2 out of 3 terms correct)}$ $x = -4 \text{ and } x = 3$ $(-4, -2) \text{ and } (3, 5)$ $A1 \text{ for both } x \text{ values dep on M1}$ $A1 \text{ for both solutions dep on M1}$ $A1 \text{ for substituting linear equation into the quadratic equation}$ $2y^2 - 6y - 20 \text{ (=0) or } y^2 - 3y - 10 \text{ (=0)}$ $2y^2 - 6y - 20 \text{ or } y^2 - 3y = 10$ $2y^2 - 6y - 20 \text{ or } y^2 - 3y = 10$ $(y - 5)(y + 2) = 0 \text{ or }$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times - 10)}}{2 \times 1} \text{ or }$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times - 10)}}{2 \times 1} \text{ or }$ $3 + \sqrt{9 + 40}$		$x = \frac{-1 \pm \sqrt{1 - (4 \times 1 \times -12)}}{2}$ or				and some simplification – allow as far as
which expanded give 2 out of 3 terms correct) $x = -4 \text{ and } x = 3$ $(-4, -2) \text{ and } (3, 5)$ Al for both x values dep on M1 Alternative mark scheme for 6 $(y-2)^2 + y^2 - 2y = 24$ $(y-2)^2 + y^2 - 2y = 24$ $2y^2 - 6y - 20 \text{ (=0) or } y^2 - 3y - 10 \text{ (=0)}$ $2y^2 - 6y = 20 \text{ or } y^2 - 3y = 10$ $2y^2 - 6y = 20 \text{ or } y^2 - 3y = 10$ $(y-5)(y+2) = 0 \text{ or}$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1} \text{ or}$ Al for substituting linear equation into the quadratic equation in the form $ay^2 + by + c = 0 \text{ or } ay^2 + by = -c$ M1ft dep on M1 for solving their quadratic equation using any correct method (allow one sign erro and some simplification – allow as far as $3 + \sqrt{9 + 40}$		2/1				
$x = -4 \text{ and } x = 3$ $(-4, -2) \text{ and } (3, 5)$ Al for both x values dep on M1 $(-4, -2) \text{ and } (3, 5)$ Alternative mark scheme for 6 $(y-2)^2 + y^2 - 2y = 24$ $(y-2)^2 + y^2 - 2y = 24$ $2y^2 - 6y - 20 (=0) \text{ or } y^2 - 3y - 10 (=0)$ $2y^2 - 6y = 20 \text{ or } y^2 - 3y = 10$ $2y^2 - 6y = 20 \text{ or } y^2 - 3y = 10$ $(y-5)(y+2) = 0 \text{ or } y$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1} \text{ or } y$ M1ft depon M1 for solving their quadratic equation using any correct method (allow one sign erro and some simplification – allow as far as $3 \pm \sqrt{9 + 40}$		$\left(x-\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2-12=0$				2
		(2) (2)				which expanded give 2 out of 3 terms correct)
Alternative mark scheme for 6 $(y-2)^2 + y^2 - 2y = 24$ $(y-2)^2 + y^2 - 2y = 24$ $2y^2 - 6y - 20 \text{ (=0) or } y^2 - 3y - 10 \text{ (=0)}$ $2y^2 - 6y = 20 \text{ or } y^2 - 3y = 10$ $2y^2 - 6y = 20 \text{ or } y^2 - 3y = 10$ $(y-5)(y+2) = 0 \text{ or}$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1} \text{ or}$ Al for a correct equation in the form $ay^2 + by + c = 0 \text{ or } ay^2 + by = -c$ M1ft dep on M1 for solving their quadratic equation $using any correct method (allow one sign erro and some simplification – allow as far as 3 + \sqrt{9 + 40}$		x = -4 and x = 3			A1	for both x values dep on M1
$(y-2)^2 + y^2 - 2y = 24$ $2y^2 - 6y - 20 (=0) \text{ or } y^2 - 3y - 10 (=0)$ $2y^2 - 6y = 20 \text{ or } y^2 - 3y = 10$ $(y-5)(y+2) = 0 \text{ or}$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1} \text{ or}$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1} \text{ or}$ $5 M1 \text{for substituting linear equation into the quadratic equation}$ $A1 \text{for a correct equation in the form}$ $ay^2 + by + c = 0 \text{ or } ay^2 + by = -c$ $M1 \text{ for substituting linear equation into the quadratic equation}$ $ay^2 + by + c = 0 \text{ or } ay^2 + by = -c$ $M1 for substituting linear equation into the quadratic equation in the form and some simplification in the form and $		(-4, -2) and $(3, 5)$	(-4, -2) and $(3, 5)$		A1	for both solutions dep on M1
$y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times 10)}}{2 \times 1}$ or $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times 10)}}{2 \times 1}$ or $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times 10)}}{2 \times 1}$ or $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times 10)}}{2 \times 1}$ or $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times 10)}}{2 \times 1}$ or $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times 10)}}{2 \times 1}$ or $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times 10)}}{2 \times 1}$ or $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times 10)}}{2 \times 1}$ or $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times 10)}}{2 \times 1}$ or $\frac{3 \pm \sqrt{9 + 40}}{2 \times 10}$	Alternativ	ve mark scheme for 6				
quadratic equation $2y^2 - 6y - 20 \text{ (=0) or } y^2 - 3y - 10 \text{ (=0)}$ $2y^2 - 6y = 20 \text{ or } y^2 - 3y = 10$ $2y^2 - 6y = 20 \text{ or } y^2 - 3y = 10$ $(y - 5)(y + 2) = 0 \text{ or}$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1} \text{ or}$ A1 for a correct equation in the form $ay^2 + by + c = 0 \text{ or } ay^2 + by = -c$ M1ft dep on M1 for solving their quadratic equation using any correct method (allow one sign erro and some simplification – allow as far as $3 + \sqrt{9 + 40}$		$(v-2)^2 + v^2 - 2v = 24$		5	M1	for substituting linear equation into the
$2y^2 - 6y = 20 \text{ or } y^2 - 3y = 10$ $(y - 5)(y + 2) = 0 \text{ or}$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1} \text{ or}$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1} \text{ or}$ $3y^2 + by + c = 0 \text{ or } ay^2 + by = -c$ $4x^2 + by + c = 0 \text{ or } ay^2 + by + c = 0 \text{ or } ay^2 + by = -c$ $4x^2 + by + c = 0 \text{ or } ay^2 + by = -c$ $4x^2 + by + c = 0 \text{ or } ay^2 + by = -c$ $4x^2 + by + c = 0 \text{ or } ay^2 + by = -c$ $4x^2 + by + c = 0 \text{ or } ay^2 + by = -c$ $4x^2 + by + c = 0 \text{ or } ay^2 + by = -c$ $4x^2 + by + c = 0 \text{ or } ay^2 + by = -c$ $4x^2 + by + c = 0 \text{ or } ay^2 + by =$		0 -7 -7 -7 -1				quadratic equation
$2y^2 - 6y = 20 \text{ or } y^2 - 3y = 10$ $(y - 5)(y + 2) = 0 \text{ or}$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1} \text{ or}$ $y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1} \text{ or}$ $3y^2 + by + c = 0 \text{ or } ay^2 + by = -c$ $y = -c$ M1ft dep on M1 for solving their quadratic equation using any correct method (allow one sign error and some simplification – allow as far as $3 \pm \sqrt{9 + 40}$		$2v^2 - 6v - 20$ (=0) or $v^2 - 3v - 10$ (=0)			A1	for a correct equation in the form
$y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1}$ or using any correct method (allow one sign erro and some simplification – allow as far as $\frac{3 \pm \sqrt{9 + 40}}{2 \times 1}$						
$y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1}$ or and some simplification – allow as far as $\frac{3 + \sqrt{9 + 40}}{2 \times 1}$		(y-5)(y+2) = 0 or			M1ft	dep on M1 for solving their quadratic equation
$\frac{3+\sqrt{9+40}}{3+\sqrt{9+40}}$		2 : (2)2 (4 1 10)				using any correct method (allow one sign error
$\frac{3+\sqrt{9+40}}{3+\sqrt{9+40}}$		$v = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{4 \times 10 \times 10}$ or				and some simplification – allow as far as
$\left(\frac{3}{3}\right)^2 - \left(\frac{3}{3}\right)^2 - 10 - 0$ $\frac{3 \pm \sqrt{3 + 40}}{2}$) or if factorising, allow brackets		2×1				$3 + \sqrt{9 + 40}$
		$\left(y-\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-10=0$				$\frac{3\pm\sqrt{9+40}}{2}$) or if factorising, allow brackets
which expanded give 2 out of 3 terms correct		(2) (2)				which expanded give 2 out of 3 terms correct
y = 5 and $y = -2$ A1 for both y values dep on M1		y = 5 and $y = -2$			A1	for both v values dep on M1
(-4, -2) and $(3, 5)$ $(-4, -2)$ and $(3, 5)$ A1 for both solutions dep on M1		(-4, -2) and $(3, 5)$	(-4, -2) and (3, 5)		A1	· •
						Total 5 marks

7	$[x=]$ $\frac{5}{9(\frac{5}{5a-2})+5}$ oe or $y=\frac{5}{9x}-\frac{5}{9}$ oe		4	M1	A correct substitution for y or writing y in terms of x
	$[x =] \frac{5(5a-2)}{45+5(5a-2)} \text{ oe or } (5-5x)(5a-2) = 45x \text{ oe}$ $\text{or } 9x = \frac{5(45a-18)}{35+25a} \text{ oe}$			M1	Multiplying each term in the numerator and denominator by $(5a-2)$ to eliminate the fraction in the denominator or equating y 's and getting rid of fractions as far as shown on left or single fraction in terms of a
	$[x =]$ $\frac{25a - 10}{35 + 25a}$ oe or $[x =]$ $\frac{5(5a - 2)}{5(7 + 5a)}$			M1	A correct fraction not in simplest form with all brackets expanded or numerator and denominator factorised with the same common factor taken out
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$x = \frac{5a - 2}{7 + 5a}$		Al	Correctly simplified $x = \text{needed for the answer, or } x = \text{previously seen in working with correct simplified expression}$ Do not isw if students have tried to do some incorrect cancelling $\text{eg } x = \frac{5a-2}{7+5a} = \frac{-2}{7} \text{ gets M3A0}$
					Total 4 marks

8	eg $10a + 4c = 20$ + 2a - 4c = 7 eg $[c = \frac{10 - 5a}{2}]$ oe $2a - 4(\frac{10 - 5a}{2}) = 7$ oe	eg $10a + 4c = 20$ -10a - 20c = 35 eg $[a = \frac{7 + 4c}{2}]$ oe $5(\frac{7 + 4c}{2}) + 2c = 10$ oe		3	M1	multiplication of one or both equation(s) with correct operation selected (allow one arithmetic error) (if $+$ or $-$ is not shown then assume it is the operation that at least 2 of the 3 terms have been calculated for) or correct rearrangement of one equation with substitution into second
	eg 5 × "2.25" + 2 c = 10 or 2 × "2.25" - 4 c = 7	eg $5a + 2 \times "-0.625" = 10$ or $2a - 4 \times "-0.625" = 7$			M1	(dep on previous M1 but not on a correct first value) correct method to find second unknown – this could be a correct substitution into one of the equations given or calculated or starting again with the same style of working as for the first method mark
	Working required		a = 2.25 c = -0.625		A1	oe eg $a = \frac{9}{4}$, $c = -\frac{5}{8}$ for both solutions dependent on first M1
						Total 3 marks

(5x +(_		$5y^{2}-6y-63[=0] \text{ oe}$ $(5y-21)(y+3)[=0]$ $-(-6)\pm\sqrt{(-6)^{2}-4\times5\times(-63)}$ 2×5		M1 M1ft	simplified to a correct 3 term quadratic dep on M1 for solving <i>their</i> 3 term quadratic equation using
($\frac{-12) \pm \sqrt{(-12)^2 - 4 \times 5 \times (-9)}}{2 \times 5}$			M1ft	term quadratic equation using
		$\frac{-(-6) \pm \sqrt{(-6)^2 - 4 \times 5 \times (-63)}}{2 \times 5}$			
5[(x	12.3 144.				any correct method (if factorising, allow brackets which expanded give 2 out of 3 terms
	$(2 - \frac{12}{10})^2 - \frac{144}{100}] - 9 = 0$ oe	$5[(y - \frac{6}{10})^2 - \frac{36}{100}] - 63 = 0 \text{ oe}$			correct) (if using formula allow one sign error and some simplification – allow as far as
					$\frac{12 \pm \sqrt{144 + 180}}{10} \text{ or }$
					$\frac{6 \pm \sqrt{36 + 1260}}{10}$)(if completing
			0.6		the square allow as far as shown)
			x = -0.6 and $x = 3$	A1	oe dep on M2 for both x-values
			OR $v = 4.2$		OR both <i>y</i> -values
			and y = -3		
Wor	king must be shown		x = -0.6,	A1	oe dep on M2 (must be clearly
1 1011	King musi be shown		y = 4.2		shown as correct pairs), accept
			x = 3		answers given as coordinates
			v = -3		anscrs given as coordinates
			, ,		Total 5 marks

10	$y(6y+5) - 2y^2 = 6$	$x\left(\frac{x-5}{6}\right) - 2\left(\frac{x-5}{6}\right)^2 = 6$		5	M1	for substitution of linear equation into quadratic or multiplying linear equation by y e.g. $xy - 6y^2 = 5y$ and intention to subtract the two equations
	E.g. $4y^2 + 5y - 6 = 0$ oe	E.g. $4x^2 - 10x - 266 = 0$ oe			A1	(dep on M1) writing the correct quadratic expression in form $ax^2 + bx + c = 0$
	$4y^2 + 5y = 6$ E.g.	$4x^2 - 10x = 266$ E.g.				allow $ax^2 + bx = c$
	E.g. $(4y-3)(y+2) (=0)$	E.g. $(2x-19)(x+7) (=0)$			M1	(dep on M1) for a complete method to solve their 3-term quadratic equation (allow one
	$(y =) \frac{-5 \pm \sqrt{5^2 - 4 \times 4 \times -6}}{2 \times 4}$	$(x =) \frac{5 \pm \sqrt{(-5)^2 - 4 \times 2 \times (-133)}}{2 \times 2}$				sign error and some simplification – allow as far as $\frac{-5 \pm \sqrt{25 + 96}}{8}$ or
	$4\left[\left(y+\frac{5}{8}\right)^2-\left(\frac{5}{8}\right)^2\right]=6 \text{ oe}$	$4\left[\left(x - \frac{10}{8}\right)^2 - \left(\frac{10}{8}\right)^2\right] = 266 \text{ oe}$ $(x =) \frac{19}{2} \text{ and } (x =) -7$				$\frac{5 \pm \sqrt{25 + 1064}}{4}$
	$(y =) \frac{3}{4}$ and $(y =) -2$	$(x =) \frac{19}{2}$ and $(x =) -7$			A1	Dep on first M1 for having two correct x values or two correct y values
			$x = \frac{19}{2}, y = \frac{3}{4}$ $x = -7, y = -2$		A1	Dep on first M1 Must be paired and labelled correctly
						Total 5 marks

11	eg. $10x + 35y = 85$		4	M1	for correct method to eliminate one
	10x + 6y = -2				variable – multiplying one or both
	with the operation of subtraction				equations so the coefficient of x or
	or $29y = 87$				y is the same in both, with the
					correct operation to eliminate one
	or $6x + 21y = 51$				variable (condone one arithmetic
	35x + 21y = -7				error)
	with the operation of subtraction				or isolating x or y in one equation
	or $29x = -58$				and substituting into the other
					(condone one arithmetic error).
	(17-7v)				
	or eg $5\left(\frac{17-7y}{2}\right) + 3y = -1$				
	or eg $5x + 3\left(\frac{17 - 2x}{7}\right) = -1$				
				M1	dep 1st M1 Substitute found value
					into one equation or correct
					method to eliminate second
					unknown.
		x = -2		A1	dep 1st M1
		y = 3		A1	
					Total 4 marks

12	$(1-2y)^2-9y-(1-2y)=2y^2-12$	$x^{2} - 9\left(\frac{1-x}{2}\right) - x = 2\left(\frac{1-x}{2}\right)^{2} - 12$		5	M1 substitution of linear equation into quadratic
	e.g. $2y^2 - 11y + 12 = 0$ oe	e.g. $x^2 + 9x + 14 = 0$ oe			A1 (dep on M1) writing the correct quadratic expression in the form $ax^2 + bx + c$ (= 0)
	allow $2y^2 - 11y = -12$ oe	allow $x^2 + 9x = -14$ oe			$ax^2 + bx + c = 0$ allow $ax^2 + bx = c$
	e.g. $(2y-3)(y-4)(=0)$	e.g. $(x+7)(x+2)(=0)$			M1 (dep on M1) for a complete method to solve their 3-term quadratic equation (allow one sign error and some
	$(y =) \frac{11 \pm \sqrt{(-11)^2 - 4 \times 2 \times 12}}{2 \times 2}$	$(x =) \frac{-9 \pm \sqrt{9^2 - 4 \times 1 \times 14}}{2}$			simplification – allow as far as $\frac{11\pm\sqrt{121-72}}{4} \text{ or } \frac{-9\pm\sqrt{81-56}}{2})$
	e.g. $2\left[\left(y - \frac{11}{4}\right)^2 - \left(\frac{11}{4}\right)^2\right] = -12$ oe	e.g. $\left(x + \frac{9}{2}\right)^2 - \left(\frac{9}{2}\right)^2 = -14$			4 2
	$y = \frac{3}{2}$ oe and $y = 4$	x = -7 and $x = -2$			A1 (dep on M1) both x-values or both y-values
			$x = -2,$ $y = \frac{3}{2} \text{ oe}$		A1 (dep on first M1) must be paired correctly
			and $x = -7$, $y = 4$		
					Total 5 marks

13	Elimination	Substitution		4	M1	for a correct method to eliminate x or y :
	eg	eg				coefficients of x or y the same and correct
	9x - 15y = 75	$4\left(\frac{25+5y}{3}\right)+3y=14$				operation to eliminate selected variable
	20x + 15y = 70 +	$4\left(\frac{3}{3}\right) + 3y = 14$				(condone 1 arithmetical error)
	(29x = 145)	or				or
		$4x+3\left(\frac{25-3x}{-5}\right)=14$				
	or					for correctly writing x or y in terms of the other variable and correctly substituting
	12x - 20y = 100	or				other variable and correctly substituting
	12x + 9y = 42 -	$3\left(\frac{14-3y}{4}\right)-5y=25$				
	(-29y = 58)	$3(\frac{3}{4})^{-3y-23}$				
		or				
		$\frac{1}{2} = \frac{14-4x}{2}$				
		$3x - 5\left(\frac{14 - 4x}{3}\right) = 25$				
					A1	dep on M1 for $x = 5$ or $y = -2$
, i	eg $3x - 5 \times \text{``}-2\text{''} = 25 \text{ or } 4x - 25$				M1	dep on M1 for substitution of found variable
	or $3 \times \text{``5''} - 5y = 25 \text{ or } 4 \times \text{``}$	$-5^{\circ} + 3y = 14$				
						or
						repeating the steps in first M1 for the second
-			-		A 1	variable
1			x = 5		A1	cao, dep on M1
			y = -2			a correct answer without working scores no marks
						Total 4 marks

14	$(S_{10} =) \frac{10}{2} (2a+9d)$ or $(S_5 =) \frac{5}{2} (2a+4d)$ oe or $a+7d=45$		5	M1	for a correct expression for the sum of the first 10 terms (S_{10}) or the first 5 terms (S_{5}) or a correct equation for the 8^{th} term
					Take 9 as their 10 – 1 and 4 as their 5 – 1 and 7 as their 8 – 1
	$\frac{10}{2}(2a+9d) = 4 \times \frac{5}{2}(2a+4d)$ oe			M1	for a correct equation relating S_{10} and S_5
	eg $d = 2a$ oe or $a = \frac{d}{2}$ oe			M1	(dep on M1) for d in terms of a , or viceversa (must be correct)
	or $a + 7d = 45$ oe and eg $10a - 5d = 0$ oe or eg $\frac{10}{2}(2(45 - 7d) + 9d) = 4 \times \frac{5}{2}(2(45 - 7d) + 4d)$ oe				or for $a + 7d = 45$ oe and correctly reducing the equation relating S_{10} and S_5 to an equation with one term in a and one term in d eg $10a - 5d = 0$ oe
	or $5d = 10(45 - 7d)$ oe				${f or}$ substituting a correct expression into their correct equation to obtain an equation in just d
	eg $a+7(2a) = 45$ or $d=6$ or eg or 70a-35d=0 $10a-5d=05a+35d=225+$ $10a+70d=450-(75a=225)$ $(-75d=-450)$			M1	(dep on M2) for a correct equation in just a or for $d = 6$ or for a correct method to eliminate a or d : coefficients of a or d the same and correct operation to eliminate selected variable (condone 1 arithmetical error)
		3		A1	Dep on M3
					Total 5 marks

eg $(3y+1)(y+5)(=0)$ or $\frac{-16\pm\sqrt{16^2-4\times3\times5}}{2\times3}$ or $3\left[\left(y+\frac{8}{3}\right)^2-\left(\frac{8}{3}\right)^2\right]+5=0$ (should give $(y=)-\frac{1}{3},-5$) eg $(3y+1)(y+5)(=0)$ $(5y+3)^2-\left(\frac{8}{3}\right)^2+5=0$ (should give $(y=)-\frac{1}{3},-5$) $(5y+3)^2-\left(\frac{8}{3}\right)^2+5=0$ (should give $(y=)-\frac{1}{3},-5$) $(5y+3)^2-\left(\frac{8}{3}\right)^2+5=0$ (should give $(y=)-\frac{1}{3},-5$) $(5y+3)^2-\left(\frac{7}{3}\right)^2-\left(\frac{7}{3}\right)^2-49=0$ (should give $(y=)-\frac{1}{3},-5$) (should give $(x=)\frac{7}{3},-7$)		for using correct substitution of linear equation into the quadratiterms shown correctly	M1	5		$x^2 - \left(\frac{x-3}{2}\right)^2 + 2x = 10$	$(3+2y)^2 - y^2 + 2(3+2y) = 10$	15
or $\frac{-16 \pm \sqrt{16^2 - 4 \times 3 \times 5}}{2 \times 3}$ or $\frac{-14 \pm \sqrt{14^2 - 4 \times 3 \times (-49)}}{2 \times 3}$ or $\frac{-14 \pm \sqrt{14^2 - 4 \times 3 \times (-49)}}{2 \times 3}$ or $\frac{3\left[\left(x + \frac{7}{3}\right)^2 - \left(\frac{7}{3}\right)^2\right] - 49 = 0}{3\left[\left(x + \frac{7}{3}\right)^2 - \left(\frac{7}{3}\right)^2\right] - 49 = 0}$ (should give $(y =) -\frac{1}{3}, -5$) (should give $(x =) \frac{7}{3}, -7$) $\frac{eg \ x = 3 + 2 \times -5 \text{ and}}{x = 3 + 2 \times -\frac{1}{3}}$ or if fact $\frac{eg \ \frac{7}{3} - 2 \times y = 3}{-7 - 2 \times y = 3}$ M1ft dep on previous M1 for sub their 2 found values of x or suitable equation	tic	for a correct 3 term quadratic	Al			- ,	$eg 3y^2 + 16y + 5 (= 0)$	
$x = 3 + 2 \times -\frac{1}{3}$ their 2 found values of x or suitable equation	orrect for and w as far as ctorising nded give 2	$\frac{-14 \pm \sqrt{196 + 588}}{6}$ or if factoris allow brackets which expanded out of 3 terms correct) or correct values for x or correct	M1			or $\frac{-14 \pm \sqrt{14^2 - 4 \times 3 \times (-49)}}{2 \times 3}$ or $3 \left[\left(x + \frac{7}{3} \right)^2 - \left(\frac{7}{3} \right)^2 \right] - 49 = 0$	or $\frac{-16 \pm \sqrt{16^2 - 4 \times 3 \times 5}}{2 \times 3}$ or $3\left[\left(y + \frac{8}{3}\right)^2 - \left(\frac{8}{3}\right)^2\right] + 5 = 0$ (should give $(y =) -\frac{1}{3}, -5$)	
or fully correct values for the variable (correct labels for states)	r y in a itution) the other x/y)	(use 2dp or better for substitution fully correct values for the obvariable (correct labels for x/y), dep on M1 (allow coordinates) must be paired correctly				$\operatorname{eg} \frac{7}{3} - 2 \times y = 3$ $-7 - 2 \times y = 3$		
x = 2.33(3), y = -0.33(3) otal 5 marks	x = 2.33(3), y = -0.33(3)			x7, y3			

eg ${}^{+}7x + 3y = 3$ or ${}^{-}21x + 9y = 9$ 9x - 3y = 21 or $21x - 7y = 49or eg 7x + 3(3x - 7) = 3 or 7\left(\frac{7 + y}{3}\right) + 3y = 3$		3	M1	a correct method to eliminate <i>x</i> or <i>y</i> – multiplying one or both equations so that one variable can be eliminated (allow a total of one error in multiplication) and the correct operation to eliminate or for substitution of one variable into the other equation.
If first M1 gained then they can substitute an incorrect value if from 'correct' method to gain this mark.	x = 1.5, y = -2.5		M1 A1	dep on M1 for a correct method to calculate the value of other letter eg substitution or starting again with elimination oe dep on M1
				Total 3 marks

17	$3y^2 + 7y + 16 = (2y - 1)^2 - (2y - 1)$	$3\left(\frac{x+1}{2}\right)^2 + 7\left(\frac{x+1}{2}\right) + 16 = x^2 - x$		5	M1 substitution of linear equation into quadratic.
	E.g. $y^2 - 13y - 14 = 0$ oe	E.g. $x^2 - 24x - 81 = 0$ oe			A1 (dep on M1) writing the correct quadratic expression in form $ax^2 + bx + c$ (= 0)
	$y^2 - 13y = 14$	$x^2 - 24x = 81$			allow $ax^2 + bx = c$
	E.g. $(y-14)(y+1) (= 0)$ or $(y=)\frac{-(-13)\pm\sqrt{(-13)^2-4\times1\times-14}}{2}$ or $(13)^2-(13)^2$	E.g. $(x+3)(x-27) = 0$ or $(x=)\frac{-(-24)\pm\sqrt{(-24)^2-4\times1\times-81}}{2}$ or $(24)^2-(24)^2$			M1 (dep on M1) for the first stage to solve their 3-term quadratic equation (allow one sign error and some simplification – allow as far as $ \frac{13 \pm \sqrt{69 + 56}}{2} \text{ or } \frac{24 \pm \sqrt{576 + 324}}{2} $ $ (24)^{2} $
	$\left(y - \frac{13}{2}\right)^2 - \left(\frac{13}{2}\right)^2 = 14 \text{ oe}$	$\left(x - \frac{24}{2}\right)^2 - \left(\frac{24}{2}\right)^2 = 810e$			or eg $\left(x - \frac{24}{2}\right)^2 - 225$ oe
	$(x =) 2 \times '14' - 1 \text{ and } 2 \times '-1' - 1$	$(y=)$ $\frac{'27'+1}{2}$ and $\frac{'-3'+1}{2}$ oe			M1 (dep on previous M1) may be implied by values of <i>y</i> or <i>x</i> that are consistent with a correct substitution.
			(27, 14)		A1 for both solutions dep on M2
			and (-3, -1)		Must be paired correctly. accept $x = 27$, $y = 14$ and $x = -3$, $y = -1$
			(- , -)		Total 5 marks

	$3\left(\frac{y+3}{2}\right)^2 + y^2 - y\left(\frac{y+3}{2}\right) = 5$				Correct substitution of x for y (or y for x)
$5x^2 - 9x + 4(=0)$ oe or $5x^2 - 9x = -4$	$5y^2 + 12y + 7 = 0$ oe or $5y^2 + 12y = -7$			M1	for a correct equation in the form $ax^2 + bx + c$ (= 0) oe or $ax^2 + bx = -c$
	$(5v \pm 7)(v \pm 1)(=0)$ or		=	M1ft	dep on M1 for solving their quadratic equation using any correct method - if factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification – allow as far as $\frac{9\pm\sqrt{81-80}}{10} \text{ oe or } \frac{-12\pm\sqrt{144-140}}{10} \text{ oe } \frac{9}{10} = \frac{1}{20} \text{ oe or } \frac{10}{10} = \frac{1}{20} \text{ oe or } \frac{1}{10} = \frac{1}{20} $
	and $\frac{"-1"+3}{2}$	x = 0.8 & y = -1.4 / x = 1 & y = -1		A1	oe, for both solutions dep on M2
		· ·	\vdash		Total 5 marks

20	$(Sm =) \frac{m}{2} (2a + (m-1)d) = 39$ oe or $(S_2m =) \frac{2m}{2} (2a + (2m-1)d) = 320$ oe		5	M1	one correct equation for S_m or S_{2m} (condone consistent use of n instead of m)
	$(Sm =) \frac{m}{2} (2a + (m-1)d) = 39$ oe and $(S_2m =) \frac{2m}{2} (2a + (2m-1)d) = 320$ oe			M1	both equations correct
	eliminate to get $dm^2 = 242$ oe			M1	
	$242 = 2 \times 11 \times 11 \text{ or } 242 = 2 \times 121 \text{ oe}$			M1	
		d=2		A1	Dep on M2
		m = 11			Both correct
					Total 5 marks

Working required $x = 7, y = 4$ find second variable.A1dep on M1	21	eg $4x + 8y = 60$ or $3x + 6y = 45$ $-\frac{4x - 6y = 4}{(14y = 56)}$ $+\frac{4x - 6y = 4}{(7x = 49)}$ eg $4x - 6\left(\frac{15 - x}{2}\right) = 4$ or $4(15 - 2y) - 6y = 4$ oe eg $x + 2 \times 4 = 15$ or $7 + 2 \times y = 15$		3	M1	Correct method to eliminate <i>x</i> or <i>y</i> : coefficients of <i>x</i> or <i>y</i> the same and correct operator to eliminate selected variable (condone any one arithmetic error in multiplication) or correctly writing <i>x</i> or <i>y</i> in terms of the other variable and correctly substituting. dep correct method to find second variable using their value from a correct method to find first variable or for repeating above method to
		W-ulina naminal	7 4		A 1	
		working required	x - 7, y - 4		AI	Total 3 marks

22	eg	eg		5	M1	substitution of $y = \pm 3 \pm 2x$ (or $x = \frac{\pm 3 \pm y}{2}$) into
	$2(-3-2x)^2 + x^2 = -6x + 42$	$\left[2y^2 + \left(\frac{-3-y}{2}\right)^2 = -6\left(\frac{-3-y}{2}\right) + 42\right]$				2
		$2y + \left({2}\right) = -0\left({2}\right) + 42$				$2y^2 + x^2 = -6x + 42$ to obtain an equation in
						x only (or y only)
	eg $9x^2 + 30x - 24 = 0$	$eg \frac{9}{4}y^2 - \frac{3}{2}y - \frac{195}{4} (= 0)$			M1	(dep on previous M1) for multiplying out and collecting terms, forming a three term
	or $3x^2 + 10x - 8 (= 0)$	or $9y^2 - 6y - 195 (= 0)$			10	quadratic in any form of $ax^2 + bx + c = 0$
	allow eg $3x^2 + 10x = 8$	or $3y^2 - 2y - 65 = 0$				where at least 2 coefficients (a or b or c) are correct
		allow eg $3y^2 - 2y = 65$				Correct
	eg $(3x-2)(x+4)(=0)$	eg $(3y+13)(y-5)(=0)$			M1	(dep on M1) method to solve their 3 term
	or $\frac{-10 \pm \sqrt{10^2 - 4 \times 3 \times -8}}{2 \times 3}$	or $\frac{2 \pm \sqrt{(-2)^2 - 4 \times 3 \times -65}}{2 \times 3}$			ft	quadratic using any correct method (allow one sign error and some simplification –
	[, , ,]	or $3\left[\left(y - \frac{1}{3}\right)^2 - \left(\frac{1}{3}\right)^2\right] = 65 \text{ oe}$				allow as far as eg $\frac{-10\pm\sqrt{100+96}}{6}$ or $\frac{2\pm\sqrt{4+780}}{6}$) or if factorising allow brackets which expanded give 2 out of 3 terms correct) or
	(should give $(x =) \frac{2}{3}, -4$)	(should give $(y=)-\frac{13}{3}$, 5)				correct values for x (allow 0.66(6) or 0.67) or correct values for y (allow $-4.33(3)$)
	$eg 2\left(\frac{2}{3}\right) + y = -3$	eg $2x + " - \frac{13}{3}" = -3$			M1	(dep on previous M1) for substituting their 2 found values of x or y in a suitable equation
	and $2("-4") + y = -3$	and $2x + "5" = -3$				(use 2dp or better for substitution) or fully correct values for the other variable (correct labels for x/y)
	Working required		x = -4, y = 5 and		A1	oe (dep on M1) and a correct quadratic (allow
			$x = \frac{2}{3}, y = -\frac{13}{3}$			coordinates) allow $x = 0.66(6)$ or 0.67, $y = -4.33(3)$, $x = -4$, $y = 5$
						Total 5 marks

	eg $5x + 4y = -2$ + 8x - 4y = 17.6 (13x = 15.6) eg $[x = \frac{4.4 + y}{2}]$ oe $5(\frac{4.4 + y}{2}) + 4y = -2$ oe	eg $10x + 8y = -4$ -10x - 5y = 22 (13y = -26) eg $[y = 2x - 4.4]$ oe $5x + 4(2x - 4.4) = -2$ oe		3	M1	multiplication of one or both equation(s) with correct operation selected (allow one arithmetic error) (if + or - is not shown then assume it is the operation that at least 2 of the 3 terms have been calculated for) or correct rearrangement of one equation with substitution into second
	eg 5 × "1.2" + 4 y = -2 or 2 × "1.2" - y = 4.4	eg $5x + 2 \times \text{``}-2\text{``} = 4.4$ or $2x - \text{``}-2\text{``} = 4.4$			M1	(dep on previous M1 but not on a correct first value) correct method to find second unknown – this could be a correct substitution into one of the equations given or calculated or starting again with the same style of working as for the first method mark
	Working required		x = 1.2 $y = -2$		A1	oe eg $x = \frac{6}{5}$ for both solutions dependent on first M1
						Total 3 marks

24	$x^2 + (7 - 2x)^2 = 34$	$\left(\frac{7-y}{2}\right)^2 + y^2 = 34$		5	M1	substitution of linear equation into quadratic
	$5x^2 - 28x + 15[=0]$ oe	$5y^2 - 14y - 87[=0]$ oe			M1	dep on previous M1 for multiplying out and collecting terms, forming a three term quadratic in any form of $ax^2 + bx + c$ (= 0) where at least 2 coefficients (a or b or c) are correct and all are non-zero
	or $\frac{-(-28) \pm \sqrt{(-28)^2 - 4 \times 5 \times 15}}{2 \times 5}$ or $5[(x - \frac{28}{10})^2 - \frac{784}{100}] + 15 = 0 \text{ oe}$ or $x = 0.6 \text{ and } x = 5$ (allow incorrect labels for x/y)	or $\frac{-(-14) \pm \sqrt{(-14)^2 - 4 \times 5 \times (-87)}}{2 \times 5}$ or $5[(y - \frac{14}{10})^2 - \frac{196}{100}] - 87 = 0 \text{ oe}$ or $y = 5.8 \text{ and } y = -3$ (allow incorrect labels for x/y)			M1ft	dep on M1 for solving <i>their</i> 3 term quadratic equation using any correct method (if factorising, allow brackets which expanded give 2 out of 3 terms correct) (if using formula allow one sign error and some simplification – allow as far as $\frac{28\pm\sqrt{784-300}}{10}$ or $\frac{14\pm\sqrt{196+1740}}{10}$) (if completing the square allow as far as shown) or correct values for <i>y</i> dep on correct quadratic
	eg $y = 7 - 2 \times 5$ and $y = 7 - 2 \times 0.6$ (correct labels for x/y)	eg $5.8 = 7 - 2x$ and $-3 = 7 - 2x$ (correct labels for x/y)			M1ft	dep on previous M1 for substituting their 2 found values of <i>x</i> or <i>y</i> in a suitable equation or correct values for the other variable
	Working must be shown		x = 0.6, y = 5.8 x = 5, y = -3		A1	dep on M1 and the correct quadratic (allow coordinates) must be paired correctly

25	Eg	eg	5	M1 for substitution of $y = \pm 2x \pm 1$ (or
	$(2x+1)^2 + x(2x+1) = 7$	$y^2 + \left(\frac{y-1}{2}\right)y = 7$		$x = \frac{\pm y \pm 1}{2}$) into $y^2 + xy = 7$ to obtain an
				equation in x only (or y only)
	E.g. $6x^2 + 5x - 6 = 0$	E.g. $3y^2 - y - 14 = 0$		M1ft dep on previous M1 for multiplying out and collecting terms, forming a three
	$6x^2 + 5x = 6$	$3y^2 - y = 14$ $3y^2 - y = 14$		term quadratic in any form of $ax^2 + bx + c = 0$ where at least 2 coefficients (a or b or c) are correct
•	E.g.	E.g.		M1ft dep on first M1 method to solve
	(2x+3)(3x-2)(=0)	(y+2)(3y-7)(=0)		their 3 term quadratic using any correct method (allow one sign error and some
	or	or		simplification – allow as far as eg
	$x = \frac{-5 \pm \sqrt{5^2 - 4 \times 6 \times -6}}{2 \times 6}$	$y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 3 \times -14}}{2 \times 3}$		$\frac{-5 \pm \sqrt{25 + 144}}{12}$ or $\frac{1 \pm \sqrt{1 + 168}}{6}$ or if
	or	or		factorising allow brackets which
	$\left(x + \frac{5}{12}\right)^2 - \left(\frac{5}{12}\right)^2 = 1$	$\left(y - \frac{1}{6}\right)^2 - \left(\frac{1}{6}\right)^2 = \frac{14}{3}$		expanded give 2 out of 3 terms correct) or correct values for x or
	$\left(x = -\frac{3}{2} \text{ and } x = \frac{2}{3}\right)$	$\left(y = -2 \text{ and } y = \frac{7}{3}\right)$		correct values for y Accept $(x =) 0.6(66)$ rounded or truncated or $(y =) 2.3(33)$
	$y = 2\left("-\frac{3}{2}"\right) + 1(=-2)$	$-2 = 2x + 1$ or $x = -\frac{3}{2}$		M1ft dep on previous M1 for substituting their 2 found values of <i>x</i> or <i>y</i> into one of
	and	and		the two given equations
	$y = 2\left("\frac{2}{3}"\right) + 1\left(=\frac{7}{3}\right)$	$\frac{7}{3} = 2x + 1 \text{ or } x = \frac{2}{3}$		or fully correct values for the other variable (correct labels for x/y)

	$ \begin{pmatrix} -\frac{3}{2}, -2 \\ \frac{2}{3}, \frac{7}{3} \end{pmatrix} $	A1 oe dep on M2 allow $x = -1.5$, $y = -2$ x = 0.66(6), $y = 2.33(3)$ truncated or rounded
Working required		Total 5 marks

26	(gradient of $AB =$) " $-\frac{1}{2}$ " or "2" $m = -1$		6	M1 for the use of $m_1 \times m_2 = -1$ or
	2			for " $-\frac{1}{2}$ " embedded in a linear equation
				eg $y = "-\frac{1}{2}"x + c$
	(gradient of $AB = $) $\frac{k-7}{6-j}$ oe			M1 for a correct expression for the gradient which may be seen in an
	or			equation or
	(midpoint of $AB = $) $\left(\frac{j+6}{2}, \frac{k+7}{2}\right)$ oe			for a correct expression for the midpoint which may be seen in an equation.
	$\frac{k-7}{6-j} = -\frac{1}{2}$ oe or $2k-j = 8$ oe			M1 for setting up a correct equation for <i>AB</i> in terms of gradient
	or $\left(\frac{k+7}{2}\right) - 2\left(\frac{j+6}{2}\right) = 7 \text{ oe or } k-2j = 19 \text{ oe}$			for setting up a correct equation for the line given and the midpoint
	$\frac{k-7}{6-j} = -\frac{1}{2}$ oe or $2k-j = 8$ oe			A1 for 2 correct equations
	and			
	$\left(\frac{k+7}{2}\right) - 2\left(\frac{j+6}{2}\right) = 7 \text{ oe or } k-2j = 19 \text{ oe}$			
	k = -1 and $j = -10$	-		A1 for a correct value of k and a correct
				value of j
	Working required	(-2, 3)		A1 dep on previous M1
				Total 6 marks

27	$eg\ 21x + 9y = 24$ _		3	M1	for a correct method to eliminate x or y :
	$2x + 9y = 14.5$ or $14x + 63y = 101.5$ $14x + 6y = 16$ or eg $7 \times \left(\frac{14.5 - 9y}{2}\right) + 3y = 8$				multiplication of one or both equation(s) with correct operation selected (allow one arithmetic error) (if + or - is not shown then assume it is the operation that at least 2 of the 3 terms have been calculated for) or correct rearrangement of one equation with substitution into second
				M1	(dep on previous M1 but not on a correct first value) correct method to find second unknown – this could be a correct substitution into one of the equations given or calculated or starting again with the same style of working as for the first method mark
	Working required	x = 0.5 and $y = 1.5$		Al	oe, dep on M1
					Total 3 marks

28	$2(3y-1)^2 + 3y^2 = 11$	$2x^2 + 3\left(\frac{x+1}{3}\right)^2 = 11$		5	M1	substitution of linear equation into quadratic
	$21y^2 - 12y - 9 = 0 \text{ oe}$	$7x^2 + 2x - 32 = 0 \text{ oe}$			M1	dep on previous M1 for multiplying out and collecting terms, forming a three term quadratic in any form of $ax^2 + bx + c = 0$ with at least 2 coefficients (a or b or c) correct
	$eg (7y+3)(y-1) = 0$ $-(-12) \pm \sqrt{(-12)^2 - 4 \times 21 \times (-9)}$ 2×21 $21 \left[(y - \frac{2}{7})^2 - \frac{4}{49} \right] - 9 = 0 \text{ oe}$ $(gives \ y = 1, \ y = -\frac{3}{7})$	eg $(7x+16)(x-2) = 0$ $\frac{-(2) \pm \sqrt{(2)^2 - 4 \times 7 \times -32}}{2 \times 7}$ $7\left[(x - \frac{1}{7})^2 - \frac{1}{49} \right] - 32 = 0$ (gives $x = 2, x = -\frac{16}{7}$)			M1	dep on M1 for solving their 3 term quadratic equation using any correct method (if factorising, allow brackets which expanded give 2 out of 3 terms correct) (if using formula allow one sign error in subst terms and some simplification – allow as far as eg $\frac{12\pm\sqrt{144+756}}{42} \text{ or } \frac{-2\pm\sqrt{4+896}}{14} \text{)(if}$ completing the square allow as far as shown (allow error in final constant) or correct values for x or correct values for y
	eg $3 \times 1 - 1$ and $3 \times -\frac{3}{7} - 1$	eg $\frac{2+1}{3}$ and $\frac{-\frac{16}{7}+1}{3}$			M1ft	dep on previous M1 for substituting (must be shown) their 2 found values of x or y in a suitable equation (use 2dp or better for substitution) or fully correct values for the other variable (correct labels for x / y)
	Working required		$x = 2, y = 1$ and $x = -\frac{16}{7}, y = -\frac{3}{7}$		A1	dep on M2 (allow coordinates) must be paired correctly allow $x = -2.28(57)$ and $y = -0.42(85)$ (even if obtained from premature rounding of the other variable.) Total 5 marks